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Using a phase-field model including strain fields, we numerically investigate the melting-crystallization
dynamics of a biaxially stressed semi-infinite solid. A multigrid algorithm is used to solve the elasticity part of
the problem. Its efficiency allows us to explore the late stages of the full 3D Grinfeld instability. Recent
analytical predictions �P. Berger et al., Phys. Rev. Lett. 90, 176103 �2003�� regarding stability and selection of
patterns are confirmed and precised. It appears that, in the presence of a large scale stabilization mechanism,
the system reaches an equilibrium state corresponding to a nontrivial striped pattern.
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In a recent paper �1�, Berger et al. have analyzed the
morphological stability of the surface of a semi-infinite solid
submitted to a biaxial stress during a melting-crystallization
process. Like in the original Asaro-Tiller-Grinfeld case for
uniaxially stressed solids �2,3�, a corrugated surface has
lower elastic energy and, without a large scale stabilization
mechanism such as gravity, any long-wavelength perturba-
tion of an initially planar surface is amplified. However, con-
trary to the uniaxial case which yields one or several parallel
deep grooves as a result of the instability, the biaxially
stressed surface can evolve into nontrivial patterns. Indeed, it
is shown in �1� that there exists a range of applied stresses
where two systems of tilted stripes may coexist to form a
diamond pattern. Analytical predictions about physical prob-
lems involving elasticity and/or pattern selection being noto-
riously difficult, their result marks a new step in the under-
standing of the general problem of interfacial dynamics
driven by elastic stresses. This is also of practical importance
since this elasticity-driven instability is known to be the
cause of the decomposition via surface diffusion of epitaxi-
ally grown thin films into islands �Stranski-Krastanov island-
on-layer growth mode� �4�. Diamond patterns could thus
constitute a pathway to self-organized quantum dots arrays.
Yet, the calculations by Berger et al. reveal that the diamond
pattern might well be overridden by tilted stripes, a possibil-
ity which could be settled only by considering the long-time,
fully nonlinear, regime of growth.

In the present paper, we numerically investigate the long-
time dynamics of a biaxially stressed semi-infinite solid in
equilibrium with its melt �or its vapor�, using a phase-field
model.

In recent years, this class of models has become increas-
ingly successful in simulating realistic microstructure forma-
tion during phase transitions and materials processing. These
models, which replace mathematically sharp interfaces by
diffuse ones, translate into powerful numerical implementa-
tions which avoid the tracking of the interface �free-
boundary problem�. They are based upon a phase field �
which takes fixed values in bulk phases and changes

smoothly from one value to another across an interfacial re-
gion. This has the advantage of regularizing unphysical sin-
gularities such as the interfacial cusps appearing in finite
time in the sharp-interface models of Grinfeld instability
�5,6�. The phase-field idea can be traced back to studies of
phase transitions by Ginzburg and Landau �7�, but it has
received renewed interest because the combination of in-
creasing computer performances and recent phase-field mod-
els make quantitative numerical simulations possible �8�.
However, such quantitative simulations require the coupling
of the phase field with other physical fields such as tempera-
ture, composition or strain. Since these fields evolve on time
scales which may differ by orders of magnitude, their incor-
poration into the models often lead to untractable computa-
tional costs, particularly in 3D simulations. One can, by a
clever adjustment of the model �9,10�, suppress this limita-
tion in the case of diffusion-controlled phase transformations
such as the solidification of binary alloys at low undercool-
ing. In the case of a phase field coupled to elastic strain
variables, no trick is known. As pointed out in �11�, the per-
turbative solution used by Müller and Grant �12� may not be
fully consistent when other terms, such as gravity, are
present. To go into the nonlinear regime, we choose the path
of algorithmic efficiency and implement the “multigrid” al-
gorithm �13,14� for solving the elliptic system of Lamé equa-
tions. The displacement variables are thus obtained in O�N�
floating points operations, the minimal algorithmic complex-
ity achievable for fields discretized over N grid points. This
efficiency allows us to explore the late stages of the full 3D
Grinfeld instability.

In the present study, we use a phase-field model proposed
by Kassner et al. �11�. It is based on the following Ginzburg-
Landau free energy functional, depending on a scalar order
parameter �“phase field”� ��x , t� coupled to an elastic strain
tensor field uij�x�:

F = �
�
�1

2
��2� � ��2 + f��,uij,z��dV , �1�

where the integration is performed over the entire spatial
domain �. In Eq. �1�, � denotes the interface thickness, � is
a reference energy density and f�� ,uij� is the bulk free-*Electronic address: jerome.paret@l2mp.fr
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energy density, sum of a double-well contribution fdw���, a
gravity contribution fgrav�� ,z�, an elastic contribution
fel�� ,uij� and an offset contribution fc��� allowing to nu-
merically keep the equilibrium surface at a fixed altitude �0.
The latter contribution does not originate from a genuine
physical effect. It is a modelisation trick aimed at removing
the constant velocity drift experienced by a flat interface be-
tween a liquid and a solid submitted to a biaxial stress. This
allows to keep the interface within the simulation box for
long times. Since we only consider, in the present study, the
case of semi-infinite solid, such an offset amounts to a gal-
ilean transformation leaving invariant the physics of the
problem. If the presence of a substrate below the solid and its
interaction with the interface had to be considered, such a
corrective term would have to be avoided.

For the double-well contribution, we set fdw���=2�g���,
g���=�2�1−��2 which insures the existence of two stable
minima at �=0 and �=1. In the present study, we assignate
the value �=0 and the subscript l to the liquid phase and the
value �=1 and subscript s to the solid phase. Each phase is
further characterized by its density �� and elastic moduli 	�

and 
� ��= l ,s�. A constant surface free-energy density � is
associated with the solid-liquid interface. We then introduce
a function h��� such that h�0�=0 and h�1�=1 in order to
distinguish between each bulk phases. It allows to define
continuously varying bulk physical parameters p���= pl

+h����p, where p=�, 	 or 
 and �p= ps− pl. With these
conventions, we put fgrav�� ,z�=����g�z−�0� for the gravity
contribution, fel�� ,uij�=	���uijuij +
���ukk

2 for the elastic
energy density and fc���=−h���2 for the offset contribu-
tion in which  is a reference stress to be explicited later on
�17�. Each of these contribution linearly depends on the
value of the function h. Our choice for the latter function is
different from the one used in �11�. We put h���=6�5

−15�4+10�3. This ensures that the bulk values �=0 and
�=1 correspond to minima of the free energy and not only to
stationary points. This enhances numerical stability for large
stresses.

The field equations are obtained by a variational proce-
dure. For a melting-crystallization phase transformation, the
phase field � amounts to a nonconserved order parameter
and we impose upon it relaxational dynamics:

��

�t
= − R

�F
��

. �2�

Following Kassner et al. �11�, we set R=1/ �3k�s�� and �
=3� /� �18�, where k is a rate constant with the dimension of
a velocity. We obtain

k�s

�

��

�t
= �2� −

1

�2	2g���� +
�

3�
h�����	suijuij + �
ukk

2

+ ��g�z − �0� − 2�
 ,

where primes denote derivatives with respect to � �19�.
Since we deal with an elastic solid, it is safe to assume

that strain fields equilibrate much faster than the phase field
�i.e., interfacial velocities are much smaller than sound

speed�. Thus they should correspond to stationary points of
the free-energy functional F:

� j� �F
�uij

� = 0. �3�

This translates into the following system of equations:

� j�	����� jui + �iuj�� + �i�
���� juj� = 0. �4�

We have checked that, as in �11�, the sharp interface limit
�→0 yields the correct expression for the velocity of the
interface:

vn = −
1

k�s
	1 − �2

2Es
��tt − �nn�2 + �� + ��g„��x� − �0… − 2
 ,

�5�

where Es is the solid’s Young modulus and � its Poisson
ratio. �tt and �nn are respectively the tangential and normal
stresses in the solid at the interface �shear components vanish
by continuity of tractions across the interface�. � is the inter-
face curvature and ��x� is the altitude of the interface at
position x. For simplicity, Eq. �5� has been written for the
two-dimensional plane strain situation only. It aims at show-
ing that the driving force for the phase transformation and
for the Grinfeld instability lies in the deviation from isotropic
stress. It also clarifies the way the stress parameter  is fixed.
In order to keep a flat interface ��=0� fixed at the altitude
z=�0, it is immediately seen that one need to impose 2

= ��1−�2� /2Es��0
2 where �0 is the deviatoric component of

the externally applied stress.
Before going into numerical implementation of the model,

one needs to specify the parameters to be used. In order to
allow for a comparison, we have chosen the same convention
as in �11� and set the parameters to the values of solid He, for
which the Grinfeld instability has been experimentally dem-
onstrated by Torii and Balibar �15�. These are �s
=0.193 g/cm3, �l=0.170 g/cm3, �=0.2 dynes/cm, k

FIG. 1. Time evolution of the highest �dotted line� and lowest
�thick line� points on the interface. �0Y =−�0X=−�0. �0 /�c=1.27.

JÉRÔME PARET PHYSICAL REVIEW E 72, 011105 �2005�

011105-2



=100 cm/s, E=3�108 dynes/cm2, and �=0.333 �20�.
Since, aside from the pattern selection mechanism, we were
interested in the saturation of the Grinfeld instability at long
times, which is achieved due to the influence of gravity �11�,
we used the gravity constant g as a tunable parameter. The
last physical parameters to be introduced are the applied

stresses �0X and �0Y normal to the x and y directions respec-
tively. For the simulations of the purely deviatoric mode
�0X=−�0Y, we used �0X=�0=6�104 dynes/cm2. The other
runs were performed at stresses such that ���0X�+ ��0Y�� /2
=�0. These numerical parameters correspond to a Griffith
length lG=�E /�0

2 of the order of a tenth of a millimeter and
to a simulation box of the order of the millimeter. In the
following, we have chosen to label all figures in number of
grid points. Finally, we will label �c the critical stress below
which the interface is stable. For the purely deviatoric mode,
�c is given by �c

4= ���g�E2� / �1+��2.
For numerical implementation, the phase field and dis-

placement vector field are discretized over a 128�128
�128 grid. The numerical procedure then consists, given the
strain fields computed at the previous time step, in updating
the phase field by a first order explicit Euler’s scheme. The
Lamé equations �4� are then solved using a multigrid algo-
rithm. For an introduction to this class of solvers, we refer
the interested reader to �14,16�. Details of the specific imple-
mentation we used will be given in a further publication.
Briefly, it uses line Gauss-Seidel as a smoother, and a com-
bination of straight injection and half-weighting for the
coarse grid approximation. A comparison with a code using
successive over-relaxation �SOR� was performed on a 2D
256�256 test problem and, already at this modest system
size, a two orders of magnitude difference in simulation time
was observed.

The simulation is initialized by filling the bottom three-
quarters of the box with solid ��=1� and the top quarter with
fluid ��=0�. We superimpose on this planar interface a ran-
dom perturbation made of the superposition of Fourier

FIG. 2. Typical surface microstructure during grooving. �0Y =
−�0X=−�0. �0 /�c=1.27. Coordinates along the vertical axis are
magnified.

FIG. 3. Contour map of the
surface during coarsening for dif-
ferent values of the applied
stresses, without gravity �g=0�.
From top left to bottom right: IY,
IX, II ���=� /3�, and II ���

=� /4�. Stability domains named
as in �1�. Black: grooves. White:
mounds.
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modes with equal amplitudes and random phases. Fixed
boundary conditions are imposed on the upper and lower
faces, and periodic boundary conditions are imposed on the
lateral faces of the cube. The latter are submitted to normal
stresses, �0X and �0Y for the faces perpendicular to the x axis
and y axis, respectively. We set � /h=2, where h is the mesh
size. The simulation are performed on a single-processor
workstation and last for 1 up to 15 days, depending on the
distance from the stability threshold �the closer to the thresh-
old, the slower the evolution�.

A typical time evolution of the highest and lowest points
on the interface is displayed in Fig. 1. The highest points
slowly grows toward a constant value, while the deepest
groove evolve at a constant rate before reaching the final
stationary state. The final amplitude of the microstructure
depends on the value of the gravity g. The lower g, the
higher the ratio �0 /�c and the deeper the grooves. This evo-
lution clearly separates into two regimes: a “grooving” re-
gime during which “valleys” deepen at an approximately
constant velocity and a final steady state regime during
which no further evolution is observed. A typical structure of
the surface during the grooving regime is displayed in Fig. 2.

It can be seen that this microstructure consists in striped
domains with different orientations competing with each
other. This is an indication that stripes with different orien-
tations do coexist, as predicted. In order to quantitatively
check those predictions, we have performed simulations with
different applied stresses, corresponding to different regions
of the phase diagram established by Berger et al. �1�. There
are 3 different sectors: sectors IX and IY correspond respec-
tively to stripes parallel to the y and x axis, sector II corre-
sponds to stripes with inclination ±�� as given by

cos 2�� =
�1 − ����0Y + �0X�

���0X − �0Y�
, �6�

where � is the Poisson ratio of the solid. In sector II, we have
chosen external stresses so as to obtain ��=� /3 and ��

=� /4. The results are displayed in Fig. 3, which shows con-
tour maps of the surface during the grooving regime. Al-
though the observed stripes are still distorted at this stage of
the simulation, it is seen that the predicted orientations are
correct.

However, from the numerical results, it appears that the
“diamond morphology” terminology is misleading. Stripes
with different orientations are observed at different spatial

positions and tend to form domains with a well-defined tilt
angle. This is coherent with the physical space picture of
Grinfeld instability consisting in a competition of grooves,
the deepest ones screening the others and making them re-
cede. Indeed, in our simulations, a single orientation always
wins, as suggested by the weakly nonlinear analysis of �1�.
We typically observe one single groove as a final state. Such
a stationary groove is displayed in Fig. 4. Note that, since
horizontal boundary conditions are periodic, the observed
two grooves are indeed portions of a single one.

Because our simulations are fully nonlinear, we can go
further than the weakly nonlinear regime and achieve the
saturation of the instability. It appears that the answer to the
question “does the striped pattern override the diamond mor-
phology before saturation?” is “yes.” Even in the case where
saturation is achieved at a low groove amplitude �Fig. 5
�left��, near to the stability threshold ��0 /�c=1.01�, a single
orientation is obtained.

These observations raise the question of the existence of a
“quantum dots” regime in the present model. Although “dia-
mond” patterns appear to be absent, one sould notice that
purely biaxial stress ��0Y ��0X� is not necessarily the most
interesting situation. The degenerate case of isotropic biaxial
stress ��0Y =�0X�, which corresponds to a critical line in the
phase diagram presented in �1�, proves to have a rich behav-

FIG. 4. Stationary state of a biaxially stressed surface. �0Y =
−�0X=−�0; ��=� /4. �0 /�c=1.27.

FIG. 5. Left: Final state with parallel stripes.
�0Y =−�0X=−�0. �0 /�c=1.01. Right: A particu-
lar final state obtained with isotropic biaxial
stress �0Y =�0X. Horizontal boundary conditions
being periodic, repetition of the computation box
yields a hexagonal pattern. 64�64�64 grid.
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ior, yielding nontrivial patterns. As an example, we show in
Fig. 5 �right� how 3 different orientations can lock into an
hexagonal pattern, a periodic array of “dots” separated by
deep trenches.

This is certainly not all of the story. Indeed, the present
model is a rather crude one. While it is quite useful, owing to
its simplicity, for assessing on a fundamental level the long-
time behavior of the Grinfeld instability, it would need to be
extended in order for it to capture the physics of quantum
dots formation on a solid substrate. Two extensions, which
are currently under implementation, sound crucial to us: the
introduction of the substrate into the model and that of crys-
talline anisotropy which effects on the surface free energy
are known to strongly influence morphologies in almost any
growth phenomenon.

In summary, we have performed the first 3D numerical
simulations of the biaxial Grinfeld instability using a phase-
field model. The nontrivial question of pattern selection for

biaxial stresses, specially the case of one compressive and
one tensile principal stresses, has been settled in the case of
isotropic materials. The predictions of Berger et al. �1� have
been confirmed and extended to the fully nonlinear regime
which is presently outside the reach of analytical calculations
and of sharp-interface approaches. The phase-field frame-
work of the present model could be easily extended to more
complex situations, particularly the ones relevant to the
physics of thin films and quantum dots growth. The com-
bined efficiency of the phase-field technique and of the mul-
tigrid algorithm provides a powerful tool to investigate the
latter situations.

Professor K. Kassner is gratefully acknowledged for
many stimulating discussions and for providing numerical
data obtained with SOR to compare with the multigrid algo-
rithm.
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